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Features

= properties indicative of malicious intent

Features are based on 5 underlying assumptions:
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Malicious registrants reuse the same / similar registration details

Malicious registrants provide fake contact info

Malicious registrants reuse infrastructure

Malicious registrants reuse domains

Malicious registrants register similar domains




Predictor 1: Reuse of WHOIS data
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Predictor 1: Reuse of WHOIS data
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Takes into account the delay between registration and registrant verification

— WHOIS data is reused over a long period



Predictor 2: Use of fake WHOIS data
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1. Checks on individual fields 2. Consistency between fields 3. Validation against external data
- Lexical patterns - Geonames databases
- Keywords: “Unkown”, “John Smith”, ... - Registry of Belgian companies

Registrant name Registrant address Registrant mail Registrant phone Registrant organization

dnspelgium



Predictor 3: Reuse of infrastructure

« Most malicious registrations come from a small group of registrars
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(at least 100 reaistrations)

Registrar 1 ns2 GG .t

Registrar 2 nsl - com

Registrar 3 _ net

Registrar 4 ns —
Registrar 5
Registrar 6 ns_
Registrar 7 ns _
Registrar 8 ns 1/ | N C t
Registrar 9 ns2 .—O m
Registrar 10 _ com

30 0 20

40

60

80

belgium



Predictor 3: Reuse of infrastructure

registrar_id and nameserver_ip are high-cardinality categorical features

One standard approach: “Target encoding”

For each distinct category
1. Training: compute the percentage of historical malicious registrations for each category

2. Prediction: replace each category with the according percentage

Problem:

 Risk of over-fitting on infrequent categories

 Risk of target leakage from the future

» Distribution might change over time

Solution: Rolling additive smoothing



Rolling Smoothed Reputation Scores

Nn X f —|— m X w % is your estimated mean

n is the number of values you have
w Is the overall mean
n —|— m m is the “weight” you want to assign to the overall mean



Rolling Smoothed Reputation Scores

% malicious registrations for a

specific registrar over the past N days

Nn X f —|— m X w % is your estimated mean

n is the number of values you have
w Is the overall mean
n —|— m m is the “weight” you want to assign to the overall mean
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Rolling Smoothed Reputation Scores

% malicious registrations for a % malicious registrations for the

specific registrar over the past N days average registrar over the past N days

X IS your estimated mean

n is the number of values you have

w Is the overall mean

m IS the “weight” you want to assign to the overall mean
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Rolling Smoothed Reputation Scores

% malicious registrations for a % malicious registrations for the

specific registrar over the past N days average registrar over the past N days

X IS your estimated mean

nNXxX+mXw |
n is the number of values you have

r = — w is the overall mean
n —|— m m is the “weight” you want to assign to the overall mean

Intuition: there must be at least m values for the
sample mean to overtake the global mean

We compute these for the previous 7 and 30 days



Predictor 4: Reuse of domains
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Predictor 5: Similarities between domains

Benigh N-gram counts Malicious N-gram counts Reputation scores

How often did each 4-gram
occur in malicious domains
over the past N days?

How often does each 4-gram
occur in benign domains?

Which 4-grams are over-represented
in malicious domains?
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Raw Labels Overview

1.080.633 registrations

27,836 (2.6%) BAD WHOIS Manually verified based
10,911 (1.0%) GOOD WHOIS on rules and eyeball test

17,706 (1.6%) MALICIOUS Manually verified based

4,989 (0.5%) BENIGN on rules and eyeball test
| | + blacklists

1,041,087 (96.3%) UNKOWN




Ground Truth Labeling Shift
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Ground Truth Labeling Shift

Number of
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70 — bad whois
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Ground Truth Labeling Errors

could be BAD WHOIS / MALICIOUS

Labels are incomplete
Example: 244 reqistrations by same registrant
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Mislabeled domains cause trouble
» Confuse the model during training
 Masquerade as false positives during evaluation




Labels can be combined
in several ways

-Grotnd-Truth-
Weak Labels Training Labels

0
True 17,706 1.64%

No detected incidents 30 days after
registration

True 27,836 2.58%

Same WHOIS data was used in a
previous malicious registration

Domain name contains critical keyword
(e.g., bank name)




Machine Learning Pipeline

params.yaml

Feature store BN
BAD WHOIS?
.
T
NEEDS
ATTENTION?




Experimental design

Evaluation simulates passage of time

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Start of End of
evaluation label collection

Training data Test data

Training data Test data

Training data Test data

Training data Test data
Training data Test data

—

Increasing time



Expert-based classifier

Rule-based classifier
Effect of threshold parameter
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Precision: How many
selected domains are
malicious? 7

Data: Jan 2021 — Mar 2022

Expert-based classifier
on different labels
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BAD WHOIS Classifier

— Rule-based @ == LogReq =—— LGBM (tuned)

Precision: How many 1.0
selected domains are
malicious? 7
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; We can select 38% of the BAD WHOIS domains,
R at the cost of 59% false positives

eo & Significantly more accurate than rule-

based
0.4 - ¥ Not accurate enough to fully automate
registrant verification

How complete is the ground truth?
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BAD_WHOIS

OR MALICIOUS Needs Attention Classifier
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Needs Attention Classifier

(only on non-blacklisted registrations)
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SHAP values enable
interpretable predictions

® @ Predict phishing

C (@ localhost:8501

Navigation

Inference

Select App

u_label registration_start_date p_is_malicious is_malicious p_is_bad_whois is_bad_whois

Inf .
nrerence 0  myaccountverifybe  2018-01-09T09:01:05+00:00 0.6989 true 0.1265 false

App Page Select a registration to explain:

Domain

In puts Features

Model ID: higher & lower

base value f(x)
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Domain name: suspicious_domain_keywords = 1 ' registrant_email_contains_name = 0.45 ' registrant_city_population = 1.539e+7 ' registrant_name_blacklist = 0 ' registrant_name_

myaccountverify.be

Pink features drag the prediction to "Malicious"
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What’s next?

1. Abusive registrations have distinct properties |1

— Can we automatically identify malicious registrations at registration time?

2. Abusive traffic has distinct properties

» Auto-generated vs user-driven [2]

« Synchronized with known malicious traffic [3]

— Can we automatically identify malicious registrations shortly after registration?

Hao et al. PREDATOR: Proactive recognition and elimination of domain abuse at time-of-registration
Robberechts. Query Log Analysis: Detecting anomalies in DNS traffic at a TLD resolver
Spooren et al. Premadoma: An Operational Solution for DNS Registries to Prevent Malicious Domain Registrations



Take away messages

e Abusive registrations have distinct properties
1. The same / similar registration details

Provide fake contact info

Reuse infrastructure

Retread domains

a bk~ W

Use similar domains

e Machine learning outperforms a rule-based system

e Ground truth is tricky
« Bias towards rule-based system

 Incompleteness of ground truth makes training and analysis hard



Thanks!

Any questions?
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